If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=163
We move all terms to the left:
x^2-(163)=0
a = 1; b = 0; c = -163;
Δ = b2-4ac
Δ = 02-4·1·(-163)
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{163}}{2*1}=\frac{0-2\sqrt{163}}{2} =-\frac{2\sqrt{163}}{2} =-\sqrt{163} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{163}}{2*1}=\frac{0+2\sqrt{163}}{2} =\frac{2\sqrt{163}}{2} =\sqrt{163} $
| 1/x-5=10 | | 25x1.5=37.5 | | -10(s+2)=16 | | f/4+ 16=20 | | -25=5(2a+1)+2a | | -17=x-15 | | 396=164+8x | | 3(-2r)=5(8-r) | | 0.8x-11=0.3x+41=104 | | (9+n)+1=3 | | 14x÷4=180 | | 10-9n=8n | | ∣5x∣−3=37 | | 9n-10n+15=29 | | 4x+9=5x- | | 30x+3=150 | | 5.5−4.7g+6.95=–9.45−7.7g | | 28^2+x^2=36^2 | | 4e-7=13 | | x+(130)2+54+97=540 | | 7x=19=86 | | 5(6x+2)=17.5x | | -4(m/9)=-4 | | -16+4x=-24x+7x | | 5x+4x^2(2x+7)=6x^2-9x | | -5(6+2y)=-60 | | 135+147+110+x+135+118+128=900 | | X+30x+40=180 | | 7n−–5=26 | | 13^2+x^2=14^2 | | -6x=79 | | -4.5x-(-8.5x)=6.5 |